Wednesday, September 8, 2021

Chemotherapy/Antimicrobial Section/Original Paper

 Detection of NDM-1 and VIM Genes in Carbapenem-Resistant Klebsiella pneumoniae Isolates from a Tertiary Health-Care Center in Kathmandu, Nepal

 

Sabita Thapaa Nabaraj Adhikarib Anil Kumar Shahc Ishworiya Lamichhanea Binod Dhungelb Upendra Thapa Shresthab Bipin Adhikarid Megha Raj Banjarab Prakash Ghimireb Komal Raj Rijalb

 

aKantipur College of Medical Sciences, Kathmandu, Nepal;

bCentral Department of Microbiology, Tribhuvan University, Kathmandu, Nepal;

cAnnapurna Neurological Institute and Allied Sciences, Kathmandu, Nepal; 

dNuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK

ABSTRACT

Background: Klebsiella pneumoniae is one of the leading causes of nosocomial infections. Carbapenems are used as the last resort for the treatment of multidrug resistant Gram-negative bacterial infections. In recent years, resistance to these lifesaving drugs has been increasingly reported due to the production of carbapenemase. The main objective of this study was to detect the carbapenem-resistant genes blaNDM-1 and blaVIM in K. pneumoniae isolated from different clinical specimens. Methods: A total of 585 clinical specimens (urine, pus, sputum, blood, catheter tips, and others) from human subjects attended at Annapurna Neurological Institute and Allied Sciences, Kathmandu were obtained in the period between July 2018 and January 2019. The specimens were isolated and identified for K. pneumoniae. All Kpneumoniae isolates were processed for antimicrobial susceptibility testing (AST) using the disk diffusion method. The isolates were further phenotypically confirmed for carbapenemase production by the modified Hodge test (MHT) using imipenem (10 μg) and meropenem (10 μg) discs. Thus, confirmed carbapenemase-producing isolates were further screened for the production of blaNDM-1 and blaVIM using conventional polymerase chain reaction (PCR). Results: Among the clinical isolates tested, culture positivity was 38.29% (224/585), and the prevalence of K. pneumoniae was 25.89% (58/224). On AST, K. pneumoniae exhibited resistance toward carbapenems including ertapenem, meropenem, and imipenem, while it showed the highest susceptibility rate against to tigecycline (93.1%; 54/58). Overall, AST detected 60.34% (35/58) carbapenem-resistant isolates, while the MHT phenotypically confirmed 51.72% (30/58) isolates as carbapenemase-producers and 48.28% (28/58) as carbapenemase nonproducers. On subsequent screening for resistant genes among carbapenemase-producers by PCR assay, 80% (24/30) and 3.33% (1/30) isolates were found to be positive for blaNDM-1 and blaVIM, respectively. In the same assay among 28 carbapenem nonproducing isolates, 9 (32.14%) isolates were positive for blaNDM-1 gene while none of them were tested positive for blaVIM gene. Conclusions: Molecular detection of resistant genes provides greater specificity and sensitivity than those with conventional techniques, thus aiding in accurate identification of antimicrobial resistance and clinical management of the disease

 

Keywords: Klebsiella pneumoniae, New Delhi metallo-betalactamase-1, Verona integron-encoded metallo-betalactamase, Carbapenem, Modified Hodge test, Multidrug resistance, Antibiotic susceptibility test


Citation: Thapa S, Adhikari N, Shah A, K, Lamichhane I, Dhungel B, Shrestha U, T, Adhikari B, Banjara M, R, Ghimire P, Rijal K, R: Detection of NDM-1 and VIM Genes in Carbapenem-Resistant <b><i>Klebsiella pneumoniae</i></b> Isolates from a Tertiary Health-Care Center in Kathmandu, Nepal. Chemotherapy 2021. doi: 10.1159/000518256

Fulltext: Download

Bacteria in Photos

Bacteria in Photos